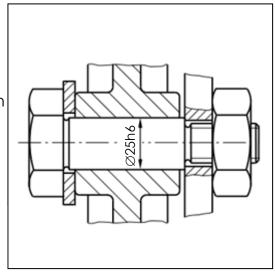


Masstoleranzen

Ausbildungseinheit für Anlagen- und Apparatebauer/innen EFZ

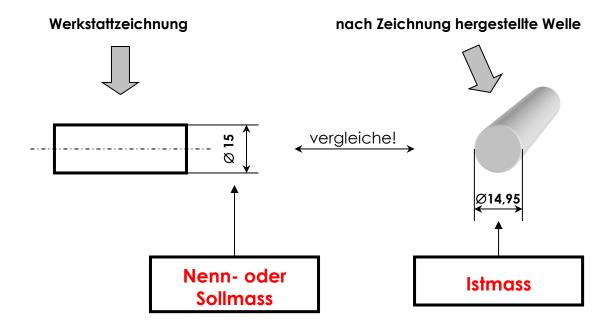
Reform 2013



Lösungen

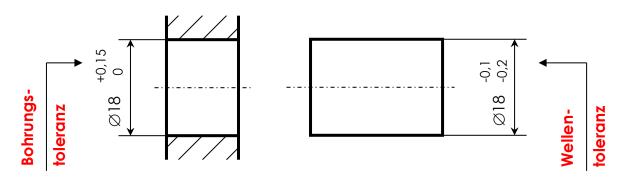
Lernziele:

- Definitionen und Begriffe von Masstoleranzen und Passungen erläutern
- > Masstoleranzen und Passungen festlegen
- Aufbau des ISO-Toleranzsystems in den Grundzügen beschreiben
- Abmasse und Passungscharakter nach Funktion bestimmen und normgerecht angeben
- Masstoleranz, Spiel und Übermass berechnen



Christian Haas

Inhaltsverzeichnis


Masstoleranzen	
Massangaben auf der Zeichnung	Seite 1
Eintragung der Abmasse	Seite 2
Aufgaben	Seite 3
Aufgaben	Seite 4
Aufgaben	Seite 5
Aufgaben	Seite 6
Aufgaben	Seite 7
Aufgaben	Seite 8
Abmasse und Passungscharakter	
Das ISO-Toleranzsystem	Seite 9
Zuordnung von Toleranzklassen für Bohrungen und Wellen	Seite 10
Passungssystem, Ausgewählte Passungen	Seite 11
Passungssystem "Einheitsbohrung"	Seite 12
Passungssystem "Einheitswelle"	Seite 13
Grösse IT-Feld	Seite 14
Aufgaben	Seite 15
Aufgaben	Seite 16
Aufgaben	Seite 17

Alle Massangaben auf einer Zeichnung erfordern eine **Toleranz**!

Die Grösse der zulässigen Abweichung ist firmenintern geregelt. Wird eine grössere Genauigkeit verlangt, so steht die zulässige Abweichung hinter der Masszahl.

Grösstmass: 18,15 mm 17,9 mm

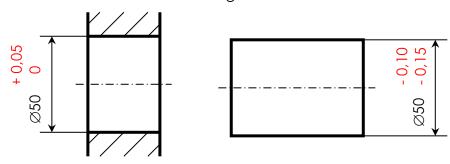
Kleinstmass: 18,00 mm 17,8 mm

Grösstspiel: grösste Bohrung – kleinste Welle

18,15 mm - 17,8 mm = 0,35 mm

Kleinstspiel: kleinste Bohrung – grösste Welle

18,0 mm - 17,9 mm = 0,1 mm

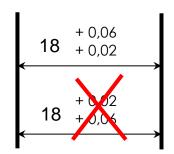

Masstoleranzen

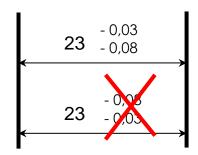
Kap. 9

Beispiel:

<u>Aufgabe</u>: Eine Passung von 50 mm Nenndurchmesser soll im Minimum 0,1 mm und im Maximum 0,2 mm Spiel haben.
Kleinstmass der Bohrung = 50,00 mm
Bestimmen Sie die notwendigen Toleranzen!

Grösstspiel = grösste Bohrung – kleinste Welle


= 50,05 - 49,85 = 0,2


Kleinstspiel = kleinste Bohrung - grösste Welle

= 50,00 - 49,90 = 0,1

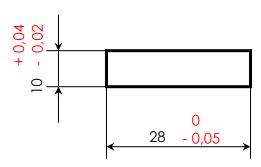
Eintragung der Abmasse

∡ <u>Aufgabe</u>: Streichen Sie <u>nicht normgerechte</u> Abmasse durch!

Merke: Der grössere Wert der Toleranz steht immer oben, der kleinere Wert unten!

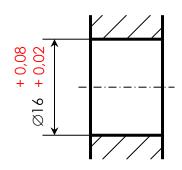
Masstoleranzen

Kap. 9

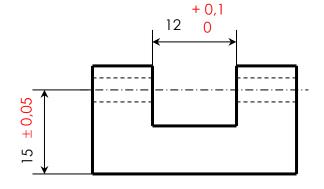

<u>Aufgabe</u>: Tragen Sie anhand nebenstehender Grenzmasse die <u>oberen</u> und <u>unteren</u> <u>Abmasse</u> in die Skizze ein!

Welle

<u>Durchmesser</u>: 14,94 ... 14,98


Platte

<u>Höhe</u>: 9,98 ... 10,04

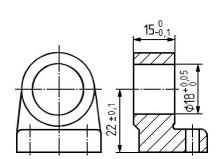

<u>Breite</u>: 27,95 ... 28,00

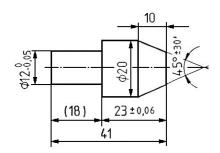
Bohrung

<u>Bohrung</u>: 16,02 ... 16,08

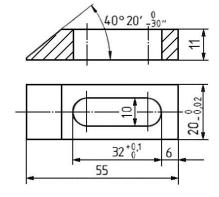
Lager

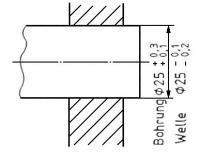
<u>Ausfräsung</u>: 12,00 ... 12,10


<u>Höhe</u>: 14,95 ... 15,05


Masstoleranzen

Kap. 9

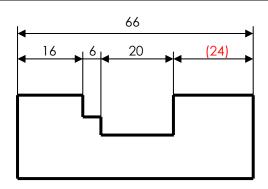

∡ <u>Aufgabe</u>: Ergänzen Sie die Tabelle mit den fehlenden Angaben!


Nennmass	Istmass	Grösstmass Kleinstmass		Toleranz	Ausschuss	Nacharbeit im Minimum
Ø18	18,06	18,05	18,00	0,05	X	
22	21,92	22,1	21,9	0,2		
15	15,03	15,00	14,9	0,1	→	0,03

Ø12	11,98	12,00	11,95	0,05	
23	23,04	23,06	22,94	0,12	
45°	44°35'	45°30'	44°30'	1°	

40°20'	40°20'	40°20'	40°19'30"	30"		-
20	19,95	20,00	19,98	0,02	X	-
32	31,93	32,1	32,00	0,1	→	0,07

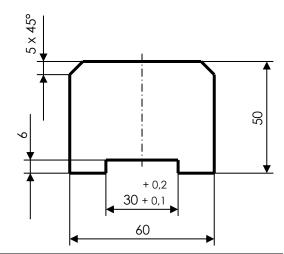
Bohrung Ø25	25,15	25,3	25,1	0,2		
Welle ∅25	24,99	24,9	24,8	0,1	↑	0,09



Masstoleranzen

Kap. 9

Lösung:


Allgemeintoleranz grob (c) Tabellenbuch Seite 110

		Höchstmass	Mindestmass
	16	16,5	15,5
Teilmasse	6	6,3	5,7
reiimasse	20	20,5	19,5
	24	24,5	23,5
Summe der Teilmasse		67,8	64,2
Gesamtmass	66	66,8	65,2

Lösung:

Allgemeintoleranz grob (c) Tabellenbuch Seite 110

	60	50	+ 0,2 30 + 0,1	6
Nennmass	60	50	30	6
Oberes Abmass	+ 0,8	+ 0,8	+ 0,2	+ 0,3
Unteres Abmass	- 0,8	- 0,8	+ 0,1	- 0,3
Höchstmass	60,8	50,8	30,2	6,3
Mindestmass	59,2	49,2	30,1	5,7
Masstoleranz	1,6	1,6	0,1	0,6

Masstoleranzen

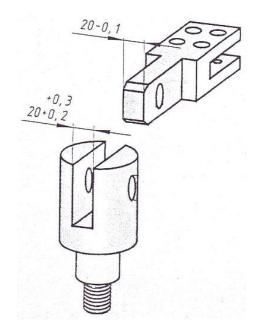
Kap. 9

∡ <u>Aufgabe</u>: Welche Toleranz liegt für das Mass 1200 mm vor, wenn

- a) die obere Vermassung,
- b) die untere Vermassung in der Zeichnung eingetragen wird?

Hinweis: Es gelten die Allgemeintoleranzen nach DIN 2768-c

Berechnungen:


a) Abstände = 1200 / 60 = 20 Abstände Allgemeintoleranz = 60 ± 0.8

Toleranz = $20 * \pm 0.8 = \pm 16 \text{ mm} = \underline{32 \text{ mm}}$

b) Allgemeintoleranz = 1200 ± 3

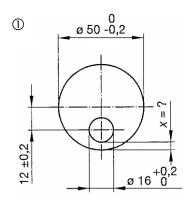
Toleranz = $\pm 3 \text{ mm} = \underline{6 \text{ mm}}$

∡ <u>Aufgabe</u>: Ermitteln Sie für das Stahlgelenk das Grösst- und Kleinstspiel!

Grösstspiel: grösste Aussparung – kleinste Nabe

20,3 mm - 19,9 mm = 0,4 mm

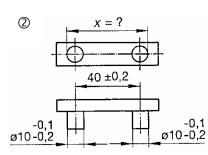
Kleinstspiel: kleinste Aussparung – grösste Nabe


20,2 mm - 20,0 mm = 0,2 mm

Masstoleranzen

Kap. 9

∡ <u>Aufgabe</u>: Bestimmen Sie durch Ausrechnen die Werte in den Aufgaben 1 bis 4!

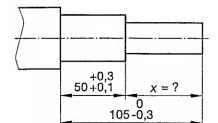


In welchem Istmassbereich darf das Prüfmass x liegen?

Kleinstmass:
$$\frac{49,8}{2} - 12,2 - \frac{16,2}{2} = 4,6$$

Grösstmass:
$$\frac{50,0}{2} - 11,8 - \frac{16,0}{2} = 5,2$$

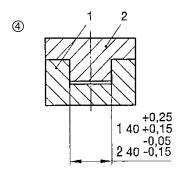
x liegt zwischen 4,6 und 5,2 mm


In welchem Istmassbereich darf das Prüfmass x liegen?

Kleinstmass: 39.8 + 9.8 = 49.6

Grösstmass: 40,2 + 9,9 = 50,1

x liegt zwischen 49,6 und 50,1 mm

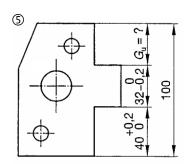


In welchem Istmassbereich darf das Mass x des Wellenansatzes liegen?

Kleinstmass: 104,7 - 50,3 = 54,4

Grösstmass: 105,0 - 50,1 = 54,9

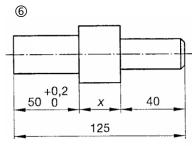
x liegt zwischen 54,4 und 54,9 mm



Bestimmen Sie das Grösst- und das Kleinstspiel der Passung!

Grösstspiel: 40,25 - 39,85 = 0,40

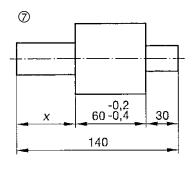
Kleinstspiel: 40,15 - 39,95 = 0,20


∡ Aufgabe: Bestimmen Sie durch Ausrechnen die Werte in den Aufgaben 5 bis 8!

Wie gross ist das Kleinstmass (G_U) des Absatzes?

Kleinstmass: 99,70 - 40,20 - 32,00 = 27,50

Allgemeintoleranz ISO 2768 - m


Allgemeintoleranz ISO 2768 - m

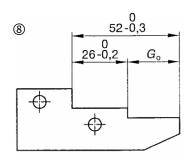
Wie gross ist die Toleranz der mit x gekennzeichneten Bundlänge der Welle?

Grösstmass: 125,5 – 50,0 – 39,7 = 35,8

Kleinstmass: 124,5 - 50,2 - 40,3 = 34,0

Toleranz: 35.8 - 34.0 = 1.8

Allgemeintoleranz ISO 2768 - m

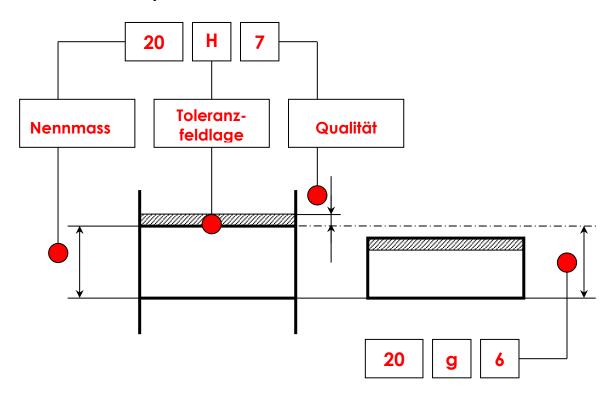

Wie gross sind die Abmasse des mit x gekennzeichneten Wellenansatzes?

Nennmass x: 140 - 60 - 30 = 50

Grösstmass: 140,5 - 29,8 - 59,6 = 51,1

Kleinstmass: 139.5 - 30.2 - 59.8 = 49.5

Abmasse: (51,1 – 50,0) + 1,1 (49,5 – 50,0) - 0,5



Wie gross ist das Grösstmass (G_o) des Absatzes?

Grösstmass: 52,0 - 25,8 = 26,2

Grösstmass G_o beträgt 26,2 mm

Das ISO-Toleranzsystem

Merke:

Für Innenmasse, wie z.B. Bohrungen verwendet man: Grossbuchstaben Für Aussenmasse, wie z.B. Wellen verwendet man: Kleinbuchstaben

Prüfung von Toleranzen

Prinzip: Eine Seite "Gutseite" und andere Seite "Ausschussseite"

Grenzlehrdorn für Innenmasse

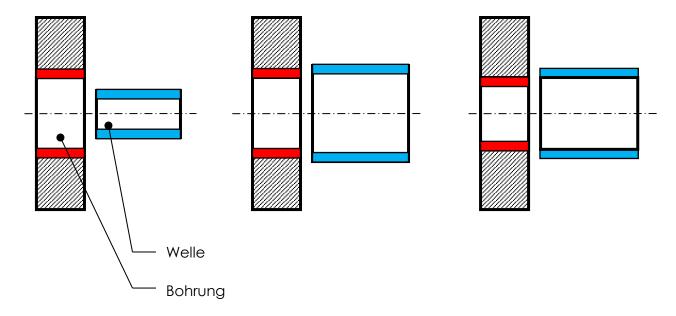
- die Gutseite verkörpert das Mindestmass

- Beispiel: 30 H7

Gutseite: 30,000Ausschussseite: 30,021

Grenzrachenlehre für Aussenmasse

- die Gutseite verkörpert das Höchstmass


- Beispiel: 35 h6

Gutseite: 35,000Ausschussseite: 34,984

Zuordnung von Toleranzklassen für Bohrungen und Wellen

Man unterscheidet die folgenden 3 Passungsarten:

Spielpassung

Übergangspassung Press- oder Übermasspassung

Anwendungsbeispiele wichtiger Passungen

<u>& Aufgabe</u>: Suchen Sie mit Hilfe des Tabellenbuches einige Anwendungs-Beispiele zu den 3 Passungsarten heraus!

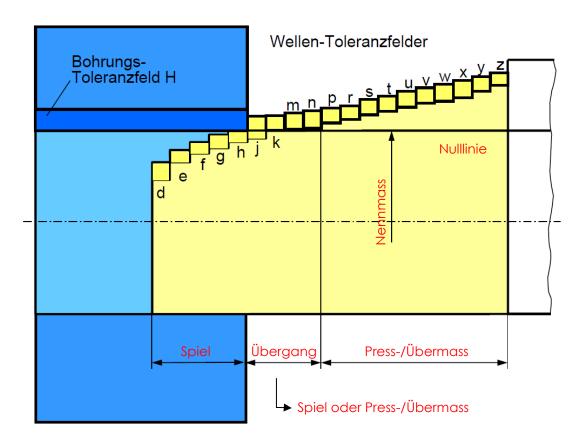
Passungsart	Anwendungsbeispiele
Spielpassung	Kurbelwelle Kolben im Zylinder Gelenke
Übergangspassung	Lagerbuchsen leicht ausbaubare Zahnräder
Presspassung	Buchsen in Gehäuse / Gleitlagerbuchsen Schrumpfringe Kupplung auf Welle

Passungssystem

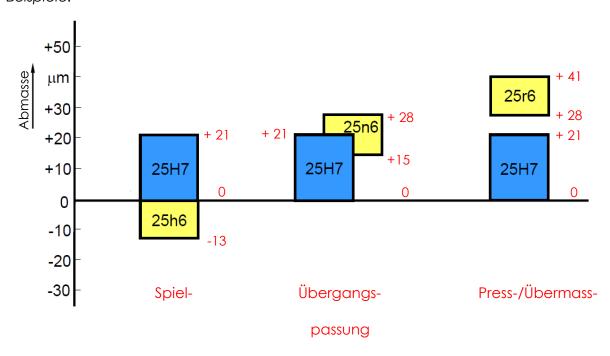
Das Passungssystem ist ein Hilfsmittel zur Vermeidung einer größeren Anzahl von Toleranzen. Definierte Passungen erlauben das Austauschen von Maschinen- oder Normteilen.

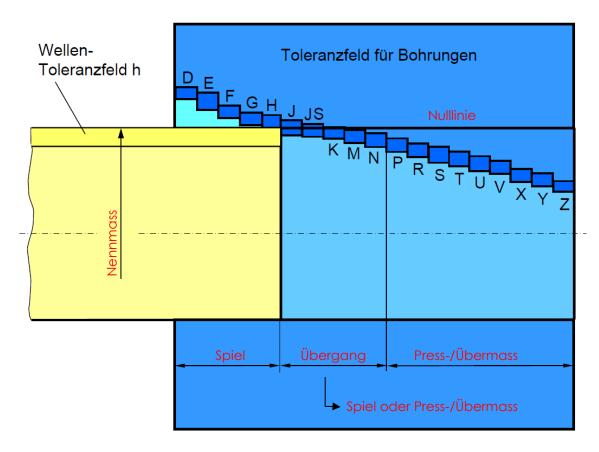
Unterschieden werden dabei zwei Verfahren:

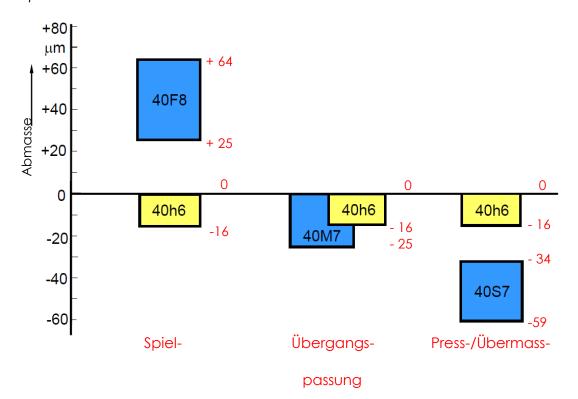
Bezeichnung	Einheitsbohrung	Einheitswelle
Ausgangssituation	Eine genaue Bohrung wird mittels Reibahle gefertigt.	Rundmaterialien (z.B. geschliffene Wellen oder kalt gezogene Stangen) werden eingekauft.
entstehende oder vorliegende Toleranz	н	h
Folgerung für die Fertigung	Die verwendete Welle (= Toleranz) wird an die Bohrung angepasst.	Die verwendete Bohrung (= Toleranz) wird an die Welle angepasst.

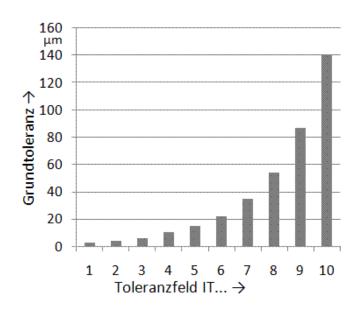

Ausgewählte Passungen

Tab.buch, S. 106 - 111


	Po	assungso	art	Passung	ssystem	
Passung	Spiel	Über- gang	Press-/ Über- mass	Einheits- Bohrung	Einheits- welle	Anwendung
H8 / f7	X			X		Wellen-Gleitlagerungen
H7 / h6	X			X	X	Säulenführungen
D10 / h9	Х				X	Distanzbuchsen auf Wellen
H7 / n6		X		X		Lager-/ Bohrbuchsen
H7 / r6			X	X		Buchsen in Gehäusen
H7 / u8			X	X		Schrumpfringe


Passungssystem "Einheitsbohrung"


Beispiele:


Passungssystem "Einheitswelle"

Beispiele:

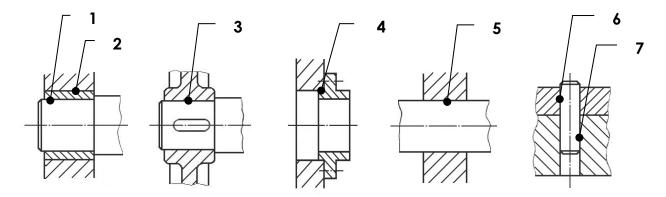
Grösse

Worin liegt der Unterschied zwischen den beiden Toleranzen:

30 H6 und **30 H8**?

30 H8 hat einen grösseren Toleranz-

bereich (+ 33
$$\mu$$
m = 0,033 mm)


als 30 H6 (+ 13 μ m = 0,013 mm)

∡ <u>Aufgabe</u>: Bestimmen Sie von den folgenden Passmassen:

- das Grösst- und Kleinstmass
- die Toleranz

Passmass	Grösstmass (in mm)	Kleinstmass (in mm)	Toleranz (in mm)
20 H5	20,009	20,0	0,009
50 H8	50,039	50,0	0,039
30 h6	30,0	29,987	0,013
30 h8	30,0	29,967	0,033
100 H13	100,54	100,0	0,54
200 h10	200,0	199,815	0,185
80 js8	80,023	79,977	0,046

Lösung:

	P	assungsa	rt	
Pos.	Spiel- passung	Übergangs- passung	Press- oder Übermass- passung	Darstellung
1	X			Zapfen in Büchse
2			X	Büchse in Wand
3		X	X	Nabe auf Wellenende
4	X	X	X	Flansch in Bohrung
5	X			Welle als Führung
6	Х			Zylinderstift als Führung
7			Х	Zylinderstift in Platte

Lösung:

Tabellenwert	Passmass		Tabellenwert	Passmass
+ 24 Ø 25 + 15	Ø 25 n5		10 ± 18	10 JS9
+ 6 Ø 24 - 15	Ø 24 K7		+ 220 100 0	100 H11
+ 30 Ø 54 0	Ø 54 H7		+ 165 450 + 68	450 F8
- 10 Ø 80 - 29	Ø 80 g6		99 ± 43,5	99 JS9 / js9
0 80 - 19	80 h6		+ 33 30 0	30 H8

<u>Lösung</u>: Hinweis: 56 js**6** \rightarrow IT**6** \rightarrow Toleranz 19 μ m \rightarrow 56 \pm 9,5 (Tab.buch S.103)

ISO- Toleranzsystem									
		Bohrung	Welle	Bohrung	Welle	Bohrung	Welle	Bohrung	Welle
		30 H7	30 g6	56 H7	56 js6	16 K7	16 h6	90 H7	90 r6
+ :	80 µm								
+ 1	70 µm								
	60 µm								
	50 μm								
	40 μm								
	30 μm								
	20 μm 10 μm								
Null-Linie —	10 μπ								
-	10 μm								
	20 μm								
	30 μm								
	40 μm								
	50 μm								
	60 μm 70 μm								
- 80 μm									
Nennmass	mm	30		56		16		90	
Oberes Abmass	μm	+ 21	- 7	+ 30	+ 9.5	+ 6	0	+ 35	+ 73
Unteres Abmass	μm	0	- 20	0	- 9.5	- 12	- 11	0	+ 51
Toleranz	μm	21	13	30	19	18	11	35	22
Grösstmass	mm	30,021	29,993	56,030	56,0095	16,006	16,000	90,035	90,073
Kleinstmass	mm	30,000	29,980	56,000	55,9905	15,988	15,989	90,000	90,051
Grösstspiel	μm	41		39.5		17			
Kleinstspiel	μm	7							
Grösstübermass	μm			9.5		12		73	
Kleinstübermass	μm							16	
Passungsart		Spiel- passung		Übergangs- passung		Übergangs- passung		Press- passung	

Aufgabe:

1. Setzen Sie für die dargestellte Baugruppe einen sinnvollen Titel!

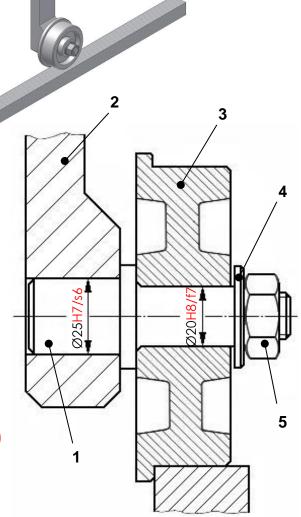
z.B.: Laufrad / Rolle

2. Benennen Sie die Positionen 1 bis 5!

Pos. 1: Achse

Pos. 2: Träger / Stütze

Pos. 3: Laufrad


Pos. 4: Unterlagscheibe

Pos. 5: 6-kt-Mutter

a) Pos.1 und Pos.2: Presspassung (H7/s6)

b) Pos.1 und Pos.3: Spielpassung (H8/f7)

4. Treffen Sie eine Passungsauswahl und ergänzen Sie die Tabelle mit den zugehörigen Abmassen!

Pos.	Toleriertes Mass	Abmasse		
Pos. 1	Ø25 <mark>s6</mark>	+ 0,048 + 0,035		
Pos.2	Ø25 H7	+ 0,021 0		
Pos.1	Ø20 <mark>H8</mark>	+ 0,033		
Pos.3	Ø20 f7	- 0,020 - 0,041		